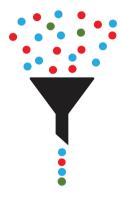


Another look at forecast trimming for combinations: robustness, accuracy and diversity

Xiaoqian Wang

In collaboration with: Yanfei Kang & Feng Li



Department of Econometrics and Business Statistics

MONASH University

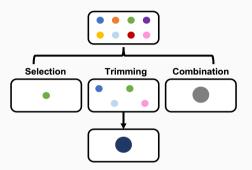
Outline

- 1 Introduction
- 2 Forecast trimming
- 3 Empirical investigation
- 4 Conclusions

Outline

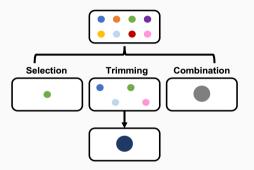
- 1 Introduction
- 2 Forecast trimming
- 3 Empirical investigation
- 4 Conclusions

Forecast trimming



Forecast trimming: combine a subset of individual forecasts.

Forecast trimming



Forecast trimming: combine a subset of individual forecasts.

Two Questions

- Why use forecast trimming?
- How to use forecast trimming?

Why use forecast trimming?

Forecast selection:

data uncertainty, model uncertainty, and parameter uncertainty

Forecast combination:

- quality of the forecast pool
- estimation of combination weights

Why use forecast trimming?

Forecast selection:

data uncertainty, model uncertainty, and parameter uncertainty

Forecast combination:

- quality of the forecast pool
- estimation of combination weights

Forecast trimming:

- weight estimation error vs. return when including additional forecasts
- risk of an outlier forecast creeping into the pool

Why use forecast trimming?

Forecast selection:

data uncertainty, model uncertainty, and parameter uncertainty

Forecast combination:

- quality of the forecast pool
- estimation of combination weights

Forecast trimming:

- weight estimation error vs. return when including additional forecasts
- risk of an outlier forecast creeping into the pool

Principle

Many could be better than all

How to use forecast trimming?

Three key characteristics of a good forecast pool:

Robustness

How robust an individual forecast is to pattern evolution

Accuracy

Forecast error of an individual forecast

Diversity

Independent information contained in the component forecasts

Research gap

Robustness

■ Lichtendahl & Winkler (2020): highlight the importance of robustness

Accuracy

- Kourentzes et al. (2019): 'forecast islands'
- literature on the 'wisdom of crowds': 'select-crowd' strategy

Diversity

- Cang & Yu (2014): use mutual information and try all possible combinations
- Lichtendahl & Winkler (2020): screen out individual forecasts with low accuracy and highly correlated errors, respectively

Research gap

Robustness

■ Lichtendahl & Winkler (2020): highlight the importance of robustness

Accuracy

- Kourentzes et al. (2019): 'forecast islands'
- literature on the 'wisdom of crowds': 'select-crowd' strategy

Diversity

- Cang & Yu (2014): use mutual information and try all possible combinations
- Lichtendahl & Winkler (2020): screen out individual forecasts with low accuracy and highly correlated errors, respectively

Main Objective

Forecast trimming algorithm addressing robustness, accuracy, and diversity simultaneously

Outline

- 1 Introduction
- 2 Forecast trimming
- 3 Empirical investigation
- 4 Conclusions

Robustness, accuracy, and diversity

Robustness

$$\sigma_i^2 = \text{Var}(|f_{i,h} - y_h|)$$
, where $1 \leqslant h \leqslant H$

Accuracy

■
$$MSE_i = \frac{1}{H} \sum_{h=1}^{H} (f_{i,h} - y_h)^2$$

Diversity

- MSEC_{i,j} = $\frac{1}{H} \sum_{h=1}^{H} (f_{i,h} f_{j,h})^2$ (Thomson et al., 2019; Kang et al., 2022)
 - a larger value indicates a higher degree of diversity
 - be averaged to characterize the overall diversity
 - diversity between a pair & interaction with the rest

Accuracy-diversity trade-off

Toy Example

Select three individuals from the forecast pool $\{-5,1,2,4\}$. The true value is 0.

- $A = \{1, 2, 4\}$
- $D = \{-5, 2, 4\}$
- Best = $\{-5, 1, 4\}$ (simple averaging)

Accuracy-diversity trade-off

Toy Example

Select three individuals from the forecast pool $\{-5,1,2,4\}$. The true value is 0.

- $A = \{1, 2, 4\}$
- $D = \{-5, 2, 4\}$
- Best = $\{-5, 1, 4\}$ (simple averaging)

Accuracy-Diversity Trade-off (ADT)

$$ADT = AvgMSE - \kappa AvgMSEC$$

$$= \underbrace{\frac{1}{M} \sum_{i=1}^{M} \text{MSE}_{i}}_{\text{mean level of accuracy}} - \underbrace{\kappa \frac{1}{M^{2}} \sum_{i=1}^{M-1} \sum_{j=2, j>i}^{M} \text{MSEC}_{i,j}}_{\text{overall diversity}}$$

lacksquare κ is a scale factor and $\kappa \in [0,1]$

The RAD algorithm

We first divide the in-sample data into D_{train} and D_{valid} .

- Set the initial individual forecaster set $\mathbb{S} = \{1, 2, \dots, i, \dots, M\}$.
- Apply Tukey's fences approach to exclude from $\mathbb S$ the individuals that lack robustness.
- Calculate the ADT criterion of $\mathbb S$ based on forecasts and actual values on D_{valid} .
- For each i in \mathbb{S} , calculate the ADT value of the remaining set after removing i from \mathbb{S} , and find $\mathrm{Min}_i\mathrm{ADT}(\mathbb{S}\setminus\{i\})$ among all i.
- Exclude from the forecaster set \mathbb{S} the individual forecasters corresponding to the minimum ADT value $\min_i \mathrm{ADT}(\mathbb{S}\setminus\{i\})$.
- $oldsymbol{\mathsf{G}}$ Calculate the ADT value for the updated $\mathbb S.$
- Repeat Steps 4-6 until there is non-significant reduction of the ADT value for $\mathbb S$ compared to the previous one or until $\mathbb S$ contains only two forecasters.

Benchmark algorithms

Algorithm	Description	Robustness	Accuracy	Diversity
None	Do not trim any individuals from the original forecast pool.			
\mathbf{R}	Exclude only the individuals that lack robustness.	✓		
A	Exclude only the individuals with relatively low forecast accuracy from the original forecast pool.		✓	
D	Exclude only the individuals whose departure would result in a significant increase in AvgMSEC from the original forecast pool.			✓
RAD	${\bf Address}$ robustness, accuracy and diversity simultaneously when implementing forecast trimming.	✓	✓	✓
AutoRAD	The only difference from the RAD algorithm is that the scale factor κ is automatically identified as the one that yields an optimal subset with the minimum MSE value of the simple average among all pre-set values of κ .	✓	√	✓

Outline

- 1 Introduction
- 2 Forecast trimming
- 3 Empirical investigation
- 4 Conclusions

Data: the M, M3, and M4 competition data (103,826 series)

- yearly, quarterly, monthly, weekly, daily, and hourly time series
- forecast horizons are 1, 4, 12, 52, 7, and 168
- remove short and constant time series

Data: the M, M3, and M4 competition data (103,826 series)

- yearly, quarterly, monthly, weekly, daily, and hourly time series
- forecast horizons are 1, 4, 12, 52, 7, and 168
- remove short and constant time series

Forecast pool: a set of ETS models

Data: the M, M3, and M4 competition data (103,826 series)

- yearly, quarterly, monthly, weekly, daily, and hourly time series
- forecast horizons are 1, 4, 12, 52, 7, and 168
- remove short and constant time series

Forecast pool: a set of ETS models

Pre-processing: exclude models with unreasonable prediction intervals

Data: the M, M3, and M4 competition data (103,826 series)

- yearly, quarterly, monthly, weekly, daily, and hourly time series
- forecast horizons are 1, 4, 12, 52, 7, and 168
- remove short and constant time series

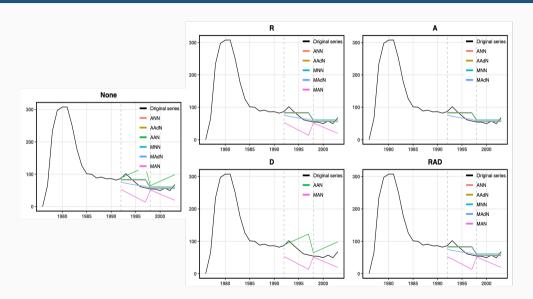
Forecast pool: a set of ETS models

Pre-processing: exclude models with unreasonable prediction intervals

Combination method: simple averaging

- the choice of weight estimation schemes is subjective
- surprising robustness and superior forecasting performance

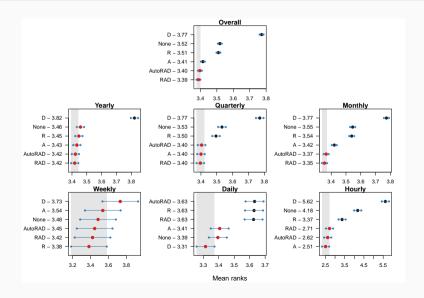
Trimming example



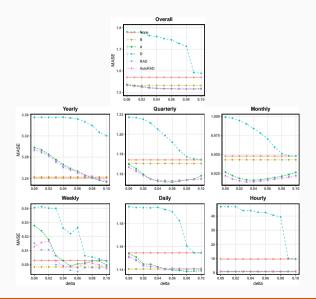
Forecast combination results

		Simple Average						
Data set	Measure	None	R	A	D	RAD	AutoRAD	
M	MASE	1.693	1.685	1.598	1.751	1.600	1.601	
	$_{\rm sMAPE}$	16.157	16.062	15.242	16.663	15.484	15.246	
	MSIS	18.702	18.739	19.398	19.249	19.044	19.228	
	Coverage	0.877	0.874	0.852	0.879	0.858	0.854	
	Upper coverage	0.916	0.915	0.908	0.917	0.911	0.909	
	Spread	0.980	0.974	0.875	1.004	0.889	0.875	
	Bias	0.071	0.071	0.058	0.071	0.058	0.058	
M3	MASE	1.387	1.383	1.401	1.443	1.399	1.399	
	$_{\rm sMAPE}$	13.399	13.355	13.401	13.997	13.383	13.371	
	MSIS	11.424	11.444	13.373	11.682	13.103	13.181	
	Coverage	0.928	0.927	0.905	0.931	0.911	0.909	
	Upper coverage	0.948	0.948	0.939	0.950	0.942	0.942	
	Spread	0.844	0.838	0.785	0.890	0.798	0.792	
	Bias	0.014	0.013	0.003	0.013	0.003	0.003	
M4	MASE	1.574	1.535	1.521	1.758	1.520	1.520	
	$_{\rm sMAPE}$	12.284	12.239	12.154	12.708	12.148	12.149	
	MSIS	24.729	18.005	14.300	48.813	14.219	14.245	
	Coverage	0.933	0.932	0.918	0.929	0.921	0.920	
	Upper coverage	0.954	0.954	0.951	0.950	0.952	0.952	
	Spread	1.408	1.105	0.892	2.461	0.904	0.898	
	Bias	0.027	0.033	0.021	0.010	0.022	0.022	
Overall	MASE	1.570	1.533	1.519	1.749	1.518	1.518	
	$_{\rm sMAPE}$	12.352	12.306	12.218	12.782	12.214	12.212	
	MSIS	24.308	17.834	14.324	47.516	14.235	14.264	
	Coverage	0.933	0.931	0.917	0.929	0.921	0.919	
	Upper coverage	0.953	0.953	0.950	0.950	0.952	0.951	
	Spread	1.389	1.097	0.889	2.404	0.901	0.895	
	Bias	0.027	0.033	0.021	0.011	0.022	0.022	

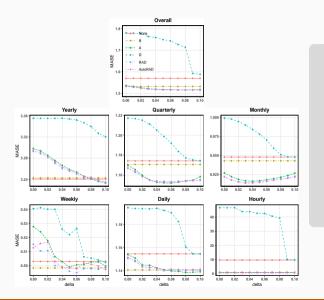
MCB tests for each data frequency



The effect of the level parameter



The effect of the level parameter



- Overall, RAD and AutoRAD are superior to other four trimming algorithms across all values of δ .
- \blacksquare A value of δ in the region between 0.04 and 0.06 seems to work well for seasonal series.
- The average performance gap between RAD (or AutoRAD) and A is relatively small.

Relative diversity

Aim

For a given pool, explore the importance of the degree of diversity relative to accuracy on the selection of trimming algorithm.

RelDiv (Relative Diversity)

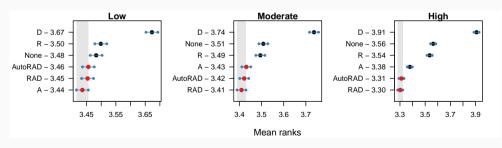
RelDiv =
$$\frac{\text{AvgMSEC}}{\text{AvgMSE}} = \frac{\sum_{i=1}^{M-1} \sum_{j=2, j>i}^{M} \left[\frac{1}{H} \sum_{h=1}^{H} (f_{i,h} - f_{j,h})^{2} \right]}{M \sum_{i=1}^{M} \left[\frac{1}{H} \sum_{h=1}^{H} (f_{i,h} - y_{h})^{2} \right]}$$

- comparable between series with different units
- allow to average the RelDiv values across time series

Guidelines for selecting trimming algorithms

RAD/AutoRAD vs. A

- Remove the instances in which both algorithms identify the same optimal subset from the given forecast pool.
- Split the time series with regard to different levels of RelDiv (low, moderate, and high levels) using Q1 (0.2) and Q3 (0.5) of RelDiv.



Outline

- 1 Introduction
- 2 Forecast trimming
- 3 Empirical investigation
- 4 Conclusions

Conclusions

- RAD addresses robustness, accuracy, and diversity simultaneously.
- ADT is used to achieve a trade-off between accuracy and diversity.
- Good performance and robustness.
- Simple guidelines for selecting forecast trimming algorithm.

Guidelines

- Not always have to address the diversity issue
- 2 RelDiv < 0.2, A is preferred
- RelDiv > 0.5, RAD and AutoRAD are preferred

References

- Cang, S., & Yu, H. (2014). A combination selection algorithm on forecasting. European Journal of Operational Research, 234(1), 127-139.
- Kang, Y., Cao, W., Petropoulos, F., & Li, F. (2022). Forecast with forecasts: Diversity matters.
 European Journal of Operational Research, 301(1), 180-190.
- Kourentzes, N., Barrow, D., & Petropoulos, F. (2019). Another look at forecast selection and combination: Evidence from forecast pooling. International Journal of Production Economics, 209, 226-235.
- Lichtendahl Jr, K. C., & Winkler, R. L. (2020). Why do some combinations perform better than others?. International Journal of Forecasting, 36(1), 142-149.
- Thomson, M. E., Pollock, A. C., Önkal, D., & Gönül, M. S. (2019). Combining forecasts: Performance and coherence. International Journal of Forecasting, 35(2), 474-484.

THANK YOU

Find me at ...

- *xqnwang.rbind.io
- @xqnwang
- xiaoqian.wang@monash.edu