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Why use forecast trimming?

Forecast selection:

data uncertainty, model uncertainty, and parameter uncertainty

Forecast combination:

quality of the forecast pool
estimation of combination weights

Forecast trimming:

weight estimation error vs. return when including additional forecasts
risk of an outlier forecast creeping into the pool

Principle

Many could be better than all
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How to use forecast trimming?

Three key characteristics of a good forecast pool:

Robustness

How robust an individual forecast is to pattern evolution

Accuracy

Forecast error of an individual forecast

Diversity

Independent information contained in the component forecasts
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Research gap

Robustness

Lichtendahl & Winkler (2020): highlight the importance of robustness

Accuracy

Kourentzes et al. (2019): ‘forecast islands’
literature on the ‘wisdom of crowds’: ‘select-crowd’ strategy

Diversity

Cang & Yu (2014): use mutual information and try all possible combinations
Lichtendahl & Winkler (2020): screen out individual forecasts with low accuracy
and highly correlated errors, respectively

Main Objective

Forecast trimming algorithm addressing robustness, accuracy, and diversity
simultaneously
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Robustness, accuracy, and diversity

Robustness

σ2
i = Var(|fi,h − yh|), where 1 ⩽ h ⩽ H

Accuracy

MSEi =
1
H

∑H
h=1 (fi,h − yh)

2

Diversity

MSECi,j =
1
H

∑H
h=1 (fi,h − fj,h)

2 (Thomson et al., 2019; Kang et al., 2022)
▶ a larger value indicates a higher degree of diversity
▶ be averaged to characterize the overall diversity
▶ diversity between a pair & interaction with the rest
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Accuracy-diversity trade-off

Toy Example

Select three individuals from the forecast pool {−5, 1, 2, 4}. The true value is 0.

A = {1, 2, 4}
D = {−5, 2, 4}
Best = {−5, 1, 4} (simple averaging)

Accuracy-Diversity Trade-off (ADT)
ADT = AvgMSE−κAvgMSEC

=
1

M

M∑
i=1

MSEi︸ ︷︷ ︸
mean level of accuracy

− κ
1

M2

M−1∑
i=1

M∑
j=2,j>i

MSECi,j︸ ︷︷ ︸
overall diversity

κ is a scale factor and κ ∈ [0, 1]
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The RAD algorithm

We first divide the in-sample data into Dtrain and Dvalid.

1 Set the initial selected individual forecaster set S = {1, 2, . . . , i, . . . ,M}.
2 Apply Tukey’s fences approach to exclude from S the individuals that lack

robustness.
3 Calculate the ADT criterion of S based on forecasts and actual values on

Dvalid.
4 For each i in S, calculate the ADT value of the remaining set after

removing i from S, and find MiniADT(S\{i}) among all i.
5 Exclude from the forecaster set S the individual forecasters corresponding

to the minimum ADT value MiniADT(S\{i}).
6 Calculate the ADT value for the updated S.
7 Repeat Steps 4-6 until there is non-significant reduction of the ADT value

for S compared to the previous one or until S contains only two
forecasters.
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Benchmark algorithms
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Data and design

Data: the M, M3, and M4 competition data (103,826 series)

yearly, quarterly, monthly, weekly, daily, and hourly time series

forecast horizons are 1, 4, 12, 52, 7, and 168

remove short and constant time series

Forecast pool: a set of ETS models

Pre-processing: exclude models with unreasonable prediction intervals

Combination method: simple averaging

the choice of weight estimation schemes is subjective

surprising robustness and superior forecasting performance
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Trimming example
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Forecast combination results

16

Simple Average

Data set Measure None R A D RAD AutoRAD

M MASE 1.693 1.685 1.598 1.751 1.600 1.601
sMAPE 16.157 16.062 15.242 16.663 15.484 15.246
MSIS 18.702 18.739 19.398 19.249 19.044 19.228

Coverage 0.877 0.874 0.852 0.879 0.858 0.854
Upper coverage 0.916 0.915 0.908 0.917 0.911 0.909

Spread 0.980 0.974 0.875 1.004 0.889 0.875
Bias 0.071 0.071 0.058 0.071 0.058 0.058

M3 MASE 1.387 1.383 1.401 1.443 1.399 1.399
sMAPE 13.399 13.355 13.401 13.997 13.383 13.371
MSIS 11.424 11.444 13.373 11.682 13.103 13.181

Coverage 0.928 0.927 0.905 0.931 0.911 0.909
Upper coverage 0.948 0.948 0.939 0.950 0.942 0.942

Spread 0.844 0.838 0.785 0.890 0.798 0.792
Bias 0.014 0.013 0.003 0.013 0.003 0.003

M4 MASE 1.574 1.535 1.521 1.758 1.520 1.520
sMAPE 12.284 12.239 12.154 12.708 12.148 12.149
MSIS 24.729 18.005 14.300 48.813 14.219 14.245

Coverage 0.933 0.932 0.918 0.929 0.921 0.920
Upper coverage 0.954 0.954 0.951 0.950 0.952 0.952

Spread 1.408 1.105 0.892 2.461 0.904 0.898
Bias 0.027 0.033 0.021 0.010 0.022 0.022

Overall MASE 1.570 1.533 1.519 1.749 1.518 1.518
sMAPE 12.352 12.306 12.218 12.782 12.214 12.212
MSIS 24.308 17.834 14.324 47.516 14.235 14.264

Coverage 0.933 0.931 0.917 0.929 0.921 0.919
Upper coverage 0.953 0.953 0.950 0.950 0.952 0.951

Spread 1.389 1.097 0.889 2.404 0.901 0.895
Bias 0.027 0.033 0.021 0.011 0.022 0.022
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MCB tests for each data frequency
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Overall
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2.5 3.5 4.5 5.5

                     Mean ranks

Figure 2. MCB tests on the ranks of the MASE values of the simple average forecasts remained after using None,

R, A, D, RAD and AutoRAD for each data frequency separately and across all frequencies (Overall).

4.5. Analysis

4.5.1. The effect of the level parameter

In Section 3.3, we introduced a level parameter, δ, to identify whether the percentage drop

in the ADT criterion is significant, which automatically determines the cut-off point at which we

stop removing individual forecasts from the pool when using RAD. The level parameter is also

used in the benchmark forecast trimming algorithms presented in Section 3.4. The greater the δ

value, the more difficult it is to eliminate an individual forecast from the forecast pool, that is,

the number of individual forecasts in the selected optimal subset tends to be larger. To explore

the importance of the level parameter δ when implementing a forecast trimming algorithm, we

calculated the forecast error (in terms of MASE) of each trimming algorithm for various values

of the level parameter, as depicted in Figure 4. Note that the performance of None and R does

not vary with different values of δ.

Overall, RAD and AutoRAD are superior to other four trimming algorithms across all values of

δ. A value of δ in the region between 0.04 and 0.06 seems to work well for seasonal series. Larger

δ values would result in better performance for the yearly frequency. This may be caused by the

small size of the original forecast pool (consisting of six models) for yearly series. When δ takes

19



The effect of the level parameter
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Figure 4. The effect of the level parameter δ on the performance of each forecast trimming algorithm for each

data frequency separately and across all frequencies (Overall).

pool. The RelDiv is given by

RelDiv =
AvgMSE

AvgMSEC
=

1
M

∑M
i=1MSEi

1
M2

∑M−1
i=1

∑M
j=2,j>iMSECi,j

=
M
∑M

i=1

[
1
H

∑H
h=1 (fi,h − yh)2

]

∑M−1
i=1

∑M
j=2,j>i

[
1
H

∑H
h=1 (fi,h − fj,h)2

] . (3)

The RelDiv measure is comparable between time series with different scales, and thus we can

average the RelDiv values across time series.

We are interested in the percentage of cases in which RAD or AutoRAD outperforms A.

We remove the instances in which both algorithms identify the same optimal subset from the

given forecast pool. Then we split the time series with regard to different levels of RelDiv (low,

moderate, and high levels) in Equation (3) using the first and third quantiles of the sample values
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Overall, RAD and AutoRAD are
superior to other four trimming
algorithms across all values of δ.

A value of δ in the region
between 0.04 and 0.06 seems to
work well for seasonal series.

The average performance gap
between RAD (or AutoRAD) and A
is relatively small.



Relative diversity

Aim

For a given pool, explore the importance of the degree of diversity relative to
accuracy on the selection of trimming algorithm.

RelDiv (Relative Diversity)

RelDiv =
AvgMSEC

AvgMSE
=

∑M−1
i=1

∑M
j=2,j>i

[
1
H

∑H
h=1 (fi,h − fj,h)

2
]

M
∑M

i=1

[
1
H

∑H
h=1 (fi,h − yh)

2
]

comparable between series with different units

allows to average the RelDiv values across time series

19



Guidelines for selecting trimming algorithms
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RAD/AutoRAD vs. A

Remove the instances in which both algorithms identify the same
optimal subset from the given forecast pool.

Split the time series with regard to different levels of RelDiv (low,
moderate, and high levels) using Q1 (0.2) and Q3 (0.5) of RelDiv.

of RelDiv. In this study, the first and third quantiles are 0.23 and 0.53, respectively. The results

from our analysis based on MASE are reported in Table 3. Overall, the percentage of cases in

which RAD or AutoRAD outperforms A is consistently greater than 50% for the moderate and

high RelDiv levels.

Table 3. Percentages of series in which RAD, AutoRAD, RAD or AutoRAD outperform A for different levels of

RelDiv (low, moderate, and high levels) in terms of MASE after excluding the instances in which both algorithms

select the same optimal subset from the original forecast pool.

RAD AutoRAD RAD or AutoRAD

Frequency Low Moderate High Low Moderate High Low Moderate High

Yearly 50.1% 54.1% 49.7% 48.6% 55.7% 48.8% 49.0% 56.8% 49.9%

Quarterly 50.0% 51.5% 47.6% 49.4% 52.1% 48.2% 49.9% 54.3% 51.0%

Monthly 50.6% 53.4% 52.5% 50.2% 55.0% 54.9% 50.7% 56.9% 57.6%

Weekly 52.7% 56.1% 58.7% 56.2% 55.0% 65.7% 56.2% 55.0% 65.7%

Daily 38.4% 50.0% 57.7% 37.2% 55.3% 52.8% 37.2% 55.3% 55.6%

Hourly 16.7% 44.7% 44.4% 25.0% 44.0% 45.5% 25.0% 48.0% 49.7%

Overall 49.0% 53.0% 50.5% 48.0% 54.4% 51.5% 48.4% 56.2% 53.8%

To investigate the statistical significance of the performance differences, we perform the MCB

test on time series with low, moderate, and high RelDiv levels, respectively. Figure 5 depicts

the results of the MCB test based on the MASE values. We observe that A is ranked first for

the low RelDiv level, but its mean rank is not significantly different from RAD and AutoRAD.

RAD achieves the best forecast accuracy for higher levels of RelDiv (moderate and high level).

RAD and AuoRAD perform similarly for different levels of RelDiv, and the two algorithms have

significantly better mean ranks than A for the high RelDiv level.

Low

Mean ranks

A − 3.44

RAD − 3.45

AutoRAD − 3.46

None − 3.48

R − 3.50

D − 3.67

3.45 3.55 3.65

Moderate

Mean ranks

RAD − 3.41

AutoRAD − 3.42

A − 3.43

R − 3.49

None − 3.51

D − 3.74

3.4 3.5 3.6 3.7

High

Mean ranks

RAD − 3.30

AutoRAD − 3.31

A − 3.38

R − 3.54

None − 3.56

D − 3.91

3.3 3.5 3.7 3.9

                     Mean ranks

Figure 5. MCB tests on the ranks of the MASE values of the simple average forecasts remained after using None,

R, A, D, RAD and AutoRAD for different levels of RelDiv.

Given a time series and its forecast pool on both validation and test sets, the results of
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RAD addresses robustness, accuracy, and diversity simultaneously.

ADT is used to achieve a trade-off between accuracy and diversity.

Good performance and robustness.

Simple guidelines for selecting forecast trimming algorithm.

Guidelines

1 Not always have to address the diversity issue

2 RelDiv < 0.2, A is preferred

3 RelDiv > 0.5, RAD and AutoRAD are preferred
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