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Brief Overview of Conformal Prediction




Uncertainty Estimation in Forecasting

Model-based Approaches
m Examples: ARIMA/state-space models
m Assumption: Explicit parametric error distribution

m Limitations: Sensitive to misspecification, coverage invalid under
non-stationarity



Uncertainty Estimation in Forecasting

Model-based Approaches
m Examples: ARIMA/state-space models
m Assumption: Explicit parametric error distribution

m Limitations: Sensitive to misspecification, coverage invalid under
non-stationarity

Resampling & Bayesian Approaches
m Bootstrap: Residual bootstrap, block bootstrap (autocorrelation)
m Bayesian: Posterior predictive distribution

m Limitations: Computationally heavy, depend on prior / resampling
scheme, no finite-sample guarantees



Model-dependent / Heuristic Approaches
m Quantile methods: Quantile regression, ML-based quantile models
m Heuristic ML: Ensembles, MC dropout

m Limitations: Model misspecification impacts interval accuracy, no
finite-sample guarantees, calibration challenging for time series
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Conformal Prediction
m Distribution-free
m Model-agnostic

m Finite-sample coverage



Conformal Prediction (a.k.a. Conformal Inference)
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Conformal prediction (Vovk et al., 2005) is an algorithm for
uncertainty quantification that produces

statistically valid prediction regions for any underlying point predictor
only assuming exchangeability of the data.

(from Wikipedia)



Classical Conformal Prediction Methods

Split / Inductive Conformal Prediction
training data set: pre-trained model i : X — R.

calibration / holdout set: nonconformity scores R; = |Y; — i (X;),
i=1,...,n.
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_ ~ N1 1
Cn (Xn+1) = /,L (Xn+‘|) :]: Q‘]_a (Z M 5R. + M 5*’00) .
=1

n+1 " on+1

Drawback: The loss of accuracy due to sample splitting, sensitive to
calibration set, the length of intervals is fixed.



Conformal Prediction Beyond Exchangeability

m Covariate shift (Lei & Candés, 2021; Tibshirani et al., 2019; Yang et al.,
2024)

m Distribution drift (Gibbs & Candés, 2021; zZaffran et al., 2022)
m Spatial dependence (Mao et al., 2024)



Conformal Prediction Beyond Exchangeability

m Covariate shift (Lei & Candés, 2021; Tibshirani et al., 2019; Yang et al.,
2024)

m Distribution drift (Gibbs & Candés, 2021; zZaffran et al., 2022)
m Spatial dependence (Mao et al., 2024)

= Temporal dependence

» Ensemble batch prediction intervals (EnbPI, Xu & Xie, 2021)

» Weighted / Locally exchangeable conformal prediction (Barber et al.,
2023)

» Adaptive conformal prediction and its extensions (Bastani et al., 2022;
Gibbs & Candés, 2021; Gibbs & Candeés, 2024; Zaffran et al., 2022)

» Quantile tracking (Angelopoulos et al., 2023)



Limitations of Conformal Prediction for Time Series

m Assumption of (local) exchangeability

» Choice of weights or window size affects reliability
m High-dimensional models

» Nonconformity score definition becomes nontrivial
m Multi-step forecasting challenges

» Recursive multi-step predictions accumulate errors

» Temporal dependencies inherent in multi-step forecast errors



Pl Conformal Prediction for Multi-step Forecasting
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Problem Setup

A time series {y;}+~1 generated by an unknown DGP

Exogenous predictors X; = (X1, ..., Xp+)

Data pOint {Zt = (Xt,yt)}t21 - RP x R

Forecasting model ft, generating forecasts {Vi.n|t theni

Sequential split:

» a proper training set: Dy C {1,...,t/}
» a calibration set Dy C {t,+1,... t, +t.}, where t. > H

m Nonconformity score:

Steh|t = Sz, Yeun) = Veeh — fe(Zat, Xesrin) = Veun — )7t+h|t-



Framework: Online Learning with Sequential Splits

Drrnetr<ectire—n

{Se4npe b <e<torre—n

A Aa
Pttty hr<nss —= G2 o ppy e J1<h<t

[ | | |
1 t 41, T

{Cglg—HJrh\T—H}lShSH

t

Figure 1: Diagram of the online learning framework with sequential splits. White: unused data;
Gray: training data; Black: forecasts in calibration set; Blue: forecasts in test set.



Properties of Multi-step Forecast Errors

Assume a time series {y;}+~1 generated by a non-stationary AR process:

Yt‘ft( Yit—d):(t—1)s X(t—r):t £) * e, (1)

where f; is a nonlinear function, and ¢, is white noise.

m The sequence of model coefficients that parameterizes the function f
is restricted to ensure that the stochastic process is locally stationary.

Based on Wold’s representation theorem, for a zero-mean
covariance-stationary time series, the optimal linear least-squares
forecasts have h-step-ahead errors that are at most MA(h — 1) pro-
cess (Diebold, 2024; Harvey et al., 1997).



Proposition 1(MA(h — 1) process for h-step-ahead optimal forecast errors)

Let {y:}+>1 be a time series generated by a general non-stationary
autoregressive process as given in Equation (1), and assume that any
exogenous predictors are known into the future. Then the forecast errors
of optimal h-step-ahead forecasts follow an approximate MA(h — 1) process

teh|t = Wivh + O1Wreh—1 * - - - + Op_qWpa.

where w; is white noise.



Proposition 2 (Autocorrelations of multi-step optimal forecast errors)

Let {y:}+>1 be a time series generated by a general non-stationary
autoregressive process as given in Equation (1), and assume that any
exogenous predictors are known into the future. The forecast errors for
optimal h-step-ahead forecasts can be approximately expressed as

h|t = Wesh + P1@up—_it + +* + + PpLren_p]t,

where p = min{d, h — 1}, and wy is white noise. Therefore, the optimal
h-step-ahead forecast errors are at most serially correlated to lag (h — 1).



Autocorrelated Multi-step Conformal Prediction (AcMCP)

For each h € [H], the iteration of the h-step-ahead quantile estimate is

t
Qt+hit = Qtsh—1jt—1 * 77(61‘1“t|t_h —a)+ l’t( Z (el“riu_h - Oé)) + étm\t
N——

i=h+1

quantile tracking scorecasting

error integration

where n > 0 is a constant learning rate, and r; is a saturation function that

x>c-glt—h)=rx)>b, and x<-—c-g(t—h)=rx)<-b, (2)

for constant b, ¢ > 0, and an admissible function g that is sublinear,
nonnegative, and nondecreasing.

B & is a forecast combination of an MA(h — 1) model and a linear
regression model.
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Theoretical Properties




Coverage Guarantees

Proposition 3

Let {St.hjt}ten De any sequence of numbers in [—b, b] for any h € [H], where
b > 0, and may be infinite. Assume that r; is a saturation function obeying
Equation (2), for an admissible function g. Then the iteration

Qtenjt = I't (Z,ﬁhﬂ(err;“_h = a)) satisfies

1
T—h

c-g(T—h)+h

.
> lerryep —a)| < a—

t=h+1

, forany T > h+1.

Therefore the prediction intervals obtained by the iteration yield the
correct long-run coverage; i.e., limr_ ﬁ b eITt_p =



Proposition 4

Let {St.hjt}ten be any sequence of numbers in [—b, b] for any h € [H], where
b > 0, and may be infinite. Then the iteration
Geehit = Qesh—1t—1 * nlerrye_p — ) satisfies

T b +nh
) < ———, foranyn>0and T > h+1.
; eITtjt—h — n(T—h) yn =

Therefore the prediction intervals obtained by the iteration yield the
correct long-run coverage; i.e., limr_,o 75 S lp.q €rTee_p =



Proposition 5

Let {Geenie }eew be any sequence of numbers in [—2, 2], and {St.p¢}ew be any
sequence of numbers in [-2, 2], for any h € [H], b > 0 and may be infinite.
Assume that r; is a saturation function obeying Equation (2), for an
admissible function g.

Then the prediction intervals obtained by the AcMCP iteration yield the
correct long-run coverage; i.e., limr_,o =+ YLy €ITyp = Q.
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Empirical Evaluation




Simulated Linear Autoregressive Process

Consider a simulated stationary ts generated from an AR(2) process:
Yt = 0.8yt 1 — 0.5y 5 + ¢y,
where ¢; is white noise with error variance % = 1.

m N = 5000 data points

m Dy and D, each with a length of 500
mH=3

m Fit AR(2) models
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Figure 2: AR(2) simulation results showing rolling coverage, mean and median interval width for

each forecast horizon. The displayed curves are smoothed over a rolling window of size
500. The black dashed line indicates the target level of 1 — ot =0.9.
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Figure 3: AR(2) simulation results showing boxplots of the rolling coverage and interval width for
each method across different forecast horizons. The red dashed lines show the target
coverage level, while the blue dashed lines indicate the median interval width of the
AcMCP method.



Simulated Nonlinear Autoregressive Process

Consider a nonlinear data generation process:
Ve = Sin(yt,']) +0.5 log(yt,Z + 1) + 0-1yt71x1,t + O.3X2’t + &y,

where x,; and x, ¢ are uniformly distributed on [0, 1], and &; is white noise
with error variance % = 0.1.

m N =2000 data points

m Dy and D, each with a length of 500

mH=3

m Fit feed-forward neural networks with a single hidden layer and lagged
inputs
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Figure 5: Nonlinear simulation results showing rolling coverage, mean and median interval width
for each forecast horizon. The displayed curves are smoothed over a rolling window of
size 100. The black dashed line indicates the target level of 1 — 0t = 0.9.
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Figure 6: Nonlinear simulation results showing boxplots of the rolling coverage and interval width
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coverage level, while the blue dashed lines indicate the median interval width of the

AcMCP method.




Eating Out Expenditure Data

The data involves monthly expenditure on cafes, restaurants and takeaway
food services in Victoria from April 1982 up to December 2019.
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Forecasting:

Turnover

m Dy = 20 years
. Dcal = 5 years

Figure 11: Monthly expenditure on cafes, restaurants and takeaway food services in Victoria,
mH=12 Australia, from April 1982 to December 2019.

m Fit ARIMA with logarithmic transformation, ETS, and STL-ETS, and then
output their simple average as final point forecasts
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Figure 12: Eating out expenditure data results showing coverage gap and interval width averaged
over the entire test set for each forecast horizon. The black dashed line in the top panel
indicates no difference from the 90% target level.



Conclusion & Discussion
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Conclusion & Discussion

m A unified notation to formalize the mathematical representation of
conformal prediction for time series
m Multi-step forecasting scenarios:
» Extend simple conformal prediction methods
» Autocorrelations of multi-step optimal forecast errors
» Introduce AcMCP accounting for the autocorrelations
» AcMCP can achieve long-run coverage guarantees without imposing
assumptions regarding data distribution shifts

Discussion:

m Limited to ex-post forecasting
m Trade-off between coverage and interval width



More Information

m Wang, X., & Hyndman, R. J. (2025). Online conformal inference for
multi-step time series forecasting. arXiv preprint arXiv:2410.13115.

m Wang, X., & Hyndman, R. J. (2025). conformalForecast: An R package
for forecasting time series with conformal prediction.
https://CRAN.R-project.org/package=conformalForecast.

A xgnwang.rbind.io
© @xgnwang
¥ xiaogian.wang@amss.ac.cn
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