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Uncertainty Estimation in Forecasting

Model-based Approaches

Examples: ARIMA/state-space models

Assumption: Explicit parametric error distribution

Limitations: Sensitive to misspecification, coverage invalid under
non-stationarity

Resampling & Bayesian Approaches

Bootstrap: Residual bootstrap, block bootstrap (autocorrelation)

Bayesian: Posterior predictive distribution

Limitations: Computationally heavy, depend on prior / resampling
scheme, no finite-sample guarantees
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Model-dependent / Heuristic Approaches

Quantile methods: Quantile regression, ML-based quantile models

Heuristic ML: Ensembles, MC dropout

Limitations: Model misspecification impacts interval accuracy, no
finite-sample guarantees, calibration challenging for time series

Conformal Prediction

Distribution-free

Model-agnostic

Finite-sample coverage
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Conformal Prediction (a.k.a. Conformal Inference)

Conformal prediction (Vovk et al., 2005) is an algorithm for
uncertainty quantification that produces
statistically valid prediction regions for any underlying point predictor
only assuming exchangeability of the data.

(from Wikipedia)
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Classical Conformal Prediction Methods

Split / Inductive Conformal Prediction

1 training data set: pre-trained model µ̂ : X → R.

2 calibration / holdout set: nonconformity scores Ri = |Yi − µ̂ (Xi)|,
i = 1, . . . , n.

3 prediction set for a given level α:

Ĉn (Xn+1) = µ̂ (Xn+1)± Q1−α

 n∑
i=1

1
n + 1

· δRi +
1

n + 1
· δ+∞

 .

Drawback: The loss of accuracy due to sample splitting, sensitive to
calibration set, the length of intervals is fixed.
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Conformal Prediction Beyond Exchangeability

Covariate shift (Lei & Candès, 2021; Tibshirani et al., 2019; Yang et al.,
2024)

Distribution drift (Gibbs & Candès, 2021; Zaffran et al., 2022)

Spatial dependence (Mao et al., 2024)

Temporal dependence
▶ Ensemble batch prediction intervals (EnbPI, Xu & Xie, 2021)
▶ Weighted / Locally exchangeable conformal prediction (Barber et al.,

2023)
▶ Adaptive conformal prediction and its extensions (Bastani et al., 2022;

Gibbs & Candès, 2021; Gibbs & Candès, 2024; Zaffran et al., 2022)
▶ Quantile tracking (Angelopoulos et al., 2023)
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Limitations of Conformal Prediction for Time Series

Assumption of (local) exchangeability
▶ Choice of weights or window size affects reliability

High-dimensional models
▶ Nonconformity score definition becomes nontrivial

Multi-step forecasting challenges
▶ Recursive multi-step predictions accumulate errors

▶ Temporal dependencies inherent in multi-step forecast errors
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Problem Setup

A time series {yt}t≥1 generated by an unknown DGP

Exogenous predictors xt = (x1,t, . . . , xp,t)′

Data point {zt = (xt, yt)}t≥1 ⊆ Rp × R

Forecasting model f̂t, generating forecasts {ŷt+h|t}h∈[H]

Sequential split:
▶ a proper training set: Dtr ⊂ {1, . . . , tr}
▶ a calibration set Dcal ⊂ {tr + 1, . . . , tr + tc}, where tc ≫ H

Nonconformity score:

st+h|t = S(z1:t, yt+h) := yt+h − f̂t(z1:t, xt+1:h) = yt+h − ŷt+h|t.
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Framework: Online Learning with Sequential Splits
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Properties of Multi-step Forecast Errors

Assume a time series {yt}t≥1 generated by a non-stationary AR process:

yt = ft(y(t−d):(t−1), x(t−k):t) + εt, (1)

where ft is a nonlinear function, and εt is white noise.

The sequence of model coefficients that parameterizes the function f
is restricted to ensure that the stochastic process is locally stationary.

Based on Wold’s representation theorem, for a zero-mean
covariance-stationary time series, the optimal linear least-squares
forecasts have h-step-ahead errors that are at most MA(h − 1) pro-
cess (Diebold, 2024; Harvey et al., 1997).
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Proposition 1 (MA(h − 1) process for h-step-ahead optimal forecast errors)

Let {yt}t≥1 be a time series generated by a general non-stationary
autoregressive process as given in Equation (1), and assume that any
exogenous predictors are known into the future. Then the forecast errors
of optimal h-step-ahead forecasts follow an approximate MA(h − 1) process

et+h|t = ωt+h + θ1ωt+h−1 + · · · + θh−1ωt+1.

where ωt is white noise.
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Proposition 2 (Autocorrelations of multi-step optimal forecast errors)

Let {yt}t≥1 be a time series generated by a general non-stationary
autoregressive process as given in Equation (1), and assume that any
exogenous predictors are known into the future. The forecast errors for
optimal h-step-ahead forecasts can be approximately expressed as

et+h|t = ωt+h + ϕ1et+h−1|t + · · · + ϕpet+h−p|t,

where p = min{d, h − 1}, and ωt is white noise. Therefore, the optimal
h-step-ahead forecast errors are at most serially correlated to lag (h − 1).
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Autocorrelated Multi-step Conformal Prediction (AcMCP)

For each h ∈ [H], the iteration of the h-step-ahead quantile estimate is

qt+h|t = qt+h−1|t−1 + η(errt|t−h − α)︸ ︷︷ ︸
quantile tracking

+ rt

 t∑
i=h+1

(erri|i−h − α)


︸ ︷︷ ︸

error integration

+ ẽt+h|t︸ ︷︷ ︸
scorecasting

.

where η > 0 is a constant learning rate, and rt is a saturation function that

x ≥ c · g(t − h) ⇒ rt(x) ≥ b, and x ≤ −c · g(t − h) ⇒ rt(x) ≤ −b, (2)

for constant b, c > 0, and an admissible function g that is sublinear,
nonnegative, and nondecreasing.

ẽt+h|t is a forecast combination of an MA(h − 1) model and a linear
regression model.
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Coverage Guarantees

Proposition 3

Let {st+h|t}t∈N be any sequence of numbers in [−b, b] for any h ∈ [H], where
b > 0, and may be infinite. Assume that rt is a saturation function obeying
Equation (2), for an admissible function g. Then the iteration
qt+h|t = rt

(∑t
i=h+1(erri|i−h − α)

)
satisfies

∣∣∣∣∣∣ 1
T − h

T∑
t=h+1

(errt|t−h − α)

∣∣∣∣∣∣ ≤ c · g(T − h) + h
T − h , for any T ≥ h + 1.

Therefore the prediction intervals obtained by the iteration yield the
correct long-run coverage; i.e., limT→∞

1
T−h

∑T
t=h+1 errt|t−h = α.
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Proposition 4

Let {st+h|t}t∈N be any sequence of numbers in [−b, b] for any h ∈ [H], where
b > 0, and may be infinite. Then the iteration
qt+h|t = qt+h−1|t−1 + η(errt|t−h − α) satisfies∣∣∣∣∣∣ 1

T − h

T∑
t=h+1

(errt|t−h − α)

∣∣∣∣∣∣ ≤ b + ηh
η(T − h)

, for any η > 0 and T ≥ h + 1.

Therefore the prediction intervals obtained by the iteration yield the
correct long-run coverage; i.e., limT→∞

1
T−h

∑T
t=h+1 errt|t−h = α.
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Proposition 5

Let {q̂t+h|t}t∈N be any sequence of numbers in [−b
2 , b

2 ], and {st+h|t}t∈N be any
sequence of numbers in [−b

2 , b
2 ], for any h ∈ [H], b > 0 and may be infinite.

Assume that rt is a saturation function obeying Equation (2), for an
admissible function g.

Then the prediction intervals obtained by the AcMCP iteration yield the
correct long-run coverage; i.e., limT→∞

1
T−h

∑T
t=h+1 errt|t−h = α.
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Simulated Linear Autoregressive Process

Consider a simulated stationary ts generated from an AR(2) process:

yt = 0.8yt−1 − 0.5yt−2 + εt,

where εt is white noise with error variance σ2 = 1.

N = 5000 data points

Dtr and Dcal, each with a length of 500

H = 3

Fit AR(2) models

21



22



23



Simulated Nonlinear Autoregressive Process

Consider a nonlinear data generation process:

yt = sin(yt−1) + 0.5 log(yt−2 + 1) + 0.1yt−1x1,t + 0.3x2,t + εt,

where x1,t and x2,t are uniformly distributed on [0, 1], and εt is white noise
with error variance σ2 = 0.1.

N = 2000 data points

Dtr and Dcal, each with a length of 500

H = 3

Fit feed-forward neural networks with a single hidden layer and lagged
inputs
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Eating Out Expenditure Data

The data involves monthly expenditure on cafes, restaurants and takeaway
food services in Victoria from April 1982 up to December 2019.

Forecasting:

Dtr = 20 years
Dcal = 5 years
Dtest = 152 months
H = 12
Fit ARIMA with logarithmic transformation, ETS, and STL-ETS, and then
output their simple average as final point forecasts
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Conclusion & Discussion

A unified notation to formalize the mathematical representation of
conformal prediction for time series
Multi-step forecasting scenarios:

▶ Extend simple conformal prediction methods
▶ Autocorrelations of multi-step optimal forecast errors
▶ Introduce AcMCP accounting for the autocorrelations
▶ AcMCP can achieve long-run coverage guarantees without imposing

assumptions regarding data distribution shifts

Discussion:

Limited to ex-post forecasting
Trade-off between coverage and interval width
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More Information

Wang, X., & Hyndman, R. J. (2025). Online conformal inference for
multi-step time series forecasting. arXiv preprint arXiv:2410.13115.

Wang, X., & Hyndman, R. J. (2025). conformalForecast: An R package
for forecasting time series with conformal prediction.
https://CRAN.R-project.org/package=conformalForecast.
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